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Abstract: A semiclassical model was developed to predict the frequencies of current self-oscillations in

weakly coupled semiconductor superlattices (SLs). The calculated frequency is derived from the escape

time out of the well and the tunneling probability through the barrier, using the well and barrier width,

effective masses and band offsets as well as the resulting energies of the sub- and minibands as input

parameters. For all SLs, the measured frequency dependence on the sample parameters can be well

described by our model. For weakly (strongly) coupled SLs, the calculated frequencies are somewhat

above (below) the observed ones. The changeover from one to the other behavior occurs for SLs with

miniband widths of a few meV.

1. Introduction

Self-oscillations of the current have been observed in doped, weakly coupled [1-4] and strongly

coupled semiconductor superlattices (SLs) [5-7] as well as in undoped, photoexcited ones [8-10]. The

SLs can be divided into two groups according to the dominant transport mechanism along the SL axis.

Strongly coupled SLs exhibit a large width of the lowest subband relative to the level broadening due

to scattering effects, typically of the order of a few meV. In this case, the transport is referred to as

miniband transport. However, in weakly coupled SLs, the width of the lowest subband is smaller than

the level broadening. Therefore, the carriers can only tunnel sequentially from the first subband of one

well to the first or a higher subband in the adjacent well. This process is called sequential resonant

tunneling.

For doped, weakly coupled SLs, frequencies from below 1 MHz up to 10 GHz have been reported

[1-4]. In this case, the current self-oscillations are caused by a recycling motion of a charge monopole,

which forms the boundary between a low- and a high-field domain [11, 12]. The oscillation of the

domain boundary is confined to 30–40% of the total length of the SL [2]. In contrast to weakly coupled

SLs, the mode of the current self-oscillations in strongly coupled SLs is very similar to the one present

in the Gunn effect [13], i.e., a propagating dipole domain [14] traversing the whole length of the SL.

The observed frequencies vary from a few GHz up to more than 100 GHz [5-7].

We present a simple model to predict the oscillation frequency for weakly coupled SLs using the

sample parameters well and barrier width, effective masses, band offset between well and barrier mate-

rial, and the resulting energies of the involved subbands. The increase of the frequencies with decreasing

barrier width and effective barrier height can be very well predicted. This model has been developed,

since microscopic theoretical transport models usually predict a frequency more than one order of mag-

nitude below the experimentally observed one.
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2. Experiment

The SL parameters well width dW and barrier width dB are listed in Table 1. The samples are

GaAs/AlAs SLs grown on GaAs substrates except for the dW=dB = 10:0=4:0 sample, which is an

In(Ga,As)/(In,Al)As SL grown lattice matched on InP. The SLs are moderately doped in the center

of each well with a typical doping level in the 1016 cm�3 range. The SLs are embedded between highly

doped GaAs or Al0:5Ga0:5As contact layers. After the growth by molecular beam epitaxy (MBE), the

samples are etched into mesas with diameters between 16 and 200 µm and provided with Ohmic con-

tacts.

For the experiments, several mesas are mounted on a sapphire sample holder with gold stripes and

put into a He flow cryostat. At the back contact, the DC voltage is applied through a bias-tee. The top

contact is connected to a spectrum analyzer (Advantest R3272 or R3361A) or a sampling oscilloscope

(Tektronix CSA 803) with an input impedance of 50 Ω to measure the frequency (power) spectrum or

Tab. 1 Sample parameters and oscillation frequencies for weakly coupled SLs. dW denotes the well width, dB the
barrier width, N the number of SL periods, i the index of the corresponding plateau of the I-V characteristic, E i
the energy and ∆i the width of the ith sub- or miniband, and fi the measured oscillation frequency. The symbols
are used in Figs. 3 and 4 to distinguish different samples. Solid symbols refer to weakly, open symbols to more
strongly coupled SLs. Except for the 10.0/4.0 sample (�+), which is an (In,Ga)As/(In,Al)As SL grown lattice
matched on InP, all other SLs are GaAs/AlAs.

dW dB N symbol i Ei ∆i fi

(nm) (nm) (meV) (meV) (MHz)

9.0 1.4 40 2 1 44.3 4.5 5,000

9.0 1.5 40 � 1 44.5 3.7 1,500

15.0 0.9 40 4 1 18.6 3.7 2,500

10.1 1.4 40 5 1 36.7 3.4 1,800

10.0 4.0 40 �+ 1 48.0 2.0 1,800

15.0 1.7 40 � 1 18.8 0.7 500

2 75.8 2.8 8,000

20.0 2.0 40 � 1 11.3 0.2 —

2 45.3 0.7 600

3 102.2 1.7 1,200

4 182.4 3.2 2,300

13.3 2.7 50 H 1 23.3 0.1 25

2 93.0 0.6 500

3 211.0 1.6 1,200

15.0 2.9 40 N 1 19.0 < 0.1 45

2 75.8 0.3 500

3 171 0.8 1,700

4 305 1.9 4,000

9.0 4.0 40 � 1 44.4 < 0.1 1

2 180.0 0.1 20
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the time trace, respectively, of the self-sustained current oscillations. A detailed schematic diagram of

the experimental setup is shown in Fig. 1.

3. Escape time model

From Table 1, in particular for the set of samples with a constant well width of 15 nm and different

barrier widths (0.9, 1.7, 2.9 nm), it appears that the frequency of the current self-oscillations depends

exponentially on the barrier width. The simplest approach to obtain such a frequency dependence is to

consider the coupling between different wells in the Wentzel-Kramers-Brillouin (WKB) approximation.

In this case, the dominant term determining the tunneling probability T (Ei) between adjacent wells is

given by

T (Ei) = exp

�
�

2dB

~

q
2m�

B(V0�Ei)

�
; (1)

where m�

B denotes the effective electron mass in the barrier and V0 the conduction band offset between

well and barrier material. The difference V0�Ei is a measure for the effective barrier height, which

decreases with increasing electric field. We used this very simple model previously to demonstrate

that the frequency dependence of the current oscillations in weakly coupled SLs is dominated by the

exponential dependence on the barrier width as well as on the effective barrier height [4].

In order to calculate not only the tunneling probability, but also the frequency of the current oscilla-

tions, we introduce the classical round trip time τrt for an electron in a potential well of width dW

τrt(E1) =
2 dW

v(E1)
= 2 dW

s
m�

W

2E1
; (2)

where m�

W denotes the effective electron mass in the well. For the energy, we use the value of the first

subband E1, because for the applied doping concentrations the injecting level is always the ground level.

The tunneling probability through a rectangular barrier is given by [15]

T (Ei) =
1

1+ 1
4 (x + x�1)2 sinh2(κ dB)

; (3)

where κ =
p

2m�

B (V0�Ei)=~ and

x =

s
m�

B Ei

m�

W (V0�Ei)
: (4)

The escape time τesc(Ei) for a single well is determined by the round trip time τrt(E1) divided by the

tunneling probability T (Ei) through the barrier [16]

τesc(Ei) =
τrt(E1)

T (Ei)
: (5)

For the energy in the tunneling probability, we use the value of the subband Ei calculated within the

Kronig-Penney model at zero electric field. A schematic diagram of the escape time model for i = 2 is

shown in Fig. 2.

The frequency of the current oscillations, which is derived from this escape time model, is deter-

mined by the inverse of the product of the escape time and the number of periods, which are covered by
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Fig. 1 Schematic diagram of experimental setup for the
measurement of the self-sustained current oscillations.

Fig. 2 Schematic diagram of the escape time model
with i=2.

the current oscillations. For weakly coupled SLs the recycling motion of the domain boundary includes

only about 30% of all periods [2] so that Nosc = 0:3 N and

fcal =
1

Nosc τesc(Ei)
=

T (Ei)

0:3 N τrt(E1)
: (6)

4. Measured versus calculated frequencies

We have calculated the oscillation frequencies for all samples listed in Table 1 on the basis of Eq. 6.

For the GaAs/AlAs SLs, we used the following parameters, V0 = 982 meV, m�

W = 0:067 me, and m�

B =

0:15 me. The measured versus the calculated frequencies are shown in Fig. 3. For weakly coupled SLs

indicated by the solid symbols, the slope of the linear fit in the double-logarithmic plot is 0.92, which

is in very good agreement with the expected value of 1. In order to directly compare the calculated

with the measured values, we introduce a scaling factor s, which is determined by the ratio of measured

and calculated frequencies, i.e. s = fi= fcal . For the weakly coupled SLs in Fig. 3, this factor is about

3 so that the observed frequencies are somewhat larger than the calculated ones. The accuracy of the

escape time model is reasonable for weakly coupled SLs, because we use for the calculation of the

oscillation frequency in the ith plateau of the I-V characteristic the ith energy level. However, in the

high-field domain the electrons tunnel into the (i+ 1)th level. For that reason the actual oscillation

frequency is expected to be somewhat higher than the calculated one. Another simplification is made

with regard to the shape of the barriers, since we use rectangular barriers and energy levels calculated

within the Kronig-Penney model without any electric field. The variation of the data points between

different samples and the consistently higher frequencies in some samples (solid triangles in Fig. 3)

could originate from fluctuations of the doping level in the wells. Theoretical calculations show that

the oscillation frequency increases by a factor of 5, if the doping level fluctuates by 3% in different

wells [17]. Some oscillation frequencies listed in Table 1 were only detected at higher temperatures.

Between 5 and 300 K, the frequencies can differ up to a factor of three resulting in some variation of

the data points. Finally, another reason for the discrepancy between fi and fcal could be the actual

oscillation mode, which can vary between different SLs [1, 18, 19].
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Fig. 3 Measured ( fi) versus calculated ( fcal) frequency
for the samples listed in Table 1. The same symbols
connected with dotted lines indicate oscillations within
a single sample in different plateaus. The dashed line
indicates the condition fcal = fi, the solid line is a least
square fit to the solid data points.
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Fig. 4 Measured ( fi) versus calculated ( fcal) frequency
for the samples listed in Table 1 and the strongly cou-
pled SLs in Ref. [5–7] (dotted circles). Note that we
used a different value for Nosc in comparison to Fig. 3.

Our simple model appears to be better than the more involved transfer model by Sánchez et al. [18].

In this work, the calculated frequency f2 for the 13.3/2.7 nm GaAs/AlAs SL is about 20 MHz. This

value is more than one order of magnitude smaller than the experimental value of 500 MHz. Our model

gives 90 MHz.

Note that we did not include the four most strongly coupled SLs (open symbols) in the linear fit of

Fig. 3, which have calculated miniband widths of ∆1 = 3:4–4.5 meV. For these samples, the observed

oscillation frequencies are lower than the calculated ones. In order to verify our model for even more

strongly coupled SLs, we have also calculated the frequencies of such samples investigated by Schom-

burg et al. [5-7]. In this case, a dipole domain travels through the entire SL. Therefore, we use Nosc = N

(instead of Nosc = 0:3 N) in Eq. 6. The dotted circles in Fig. 4 represent the measured versus calcu-

lated frequencies for strongly coupled SLs with miniband widths of ∆1 = 16–140 meV. The escape time

model also works for these samples, since the fit in Fig. 4 has also a slope of about 1. However, the

observed oscillation frequencies are now smaller (s � 0:3) than the calculated ones. We also include

all samples from Table 1 in Fig. 4. However, in order to compare the frequencies of weakly SLs with

strongly ones, we now assume that the space-charge oscillations cover all periods so that the scaling

factor for weakly coupled SLs becomes about 9. There seems to be a fundamental difference between

the sequential resonant tunneling (solid symbols) and the miniband transport regime (open symbols).

The prefactor changes at miniband widths of a few meV.

5. Summary

In conclusion, we have developed a semiclassical model to predict the frequencies of current self-

oscillations in semiconductor SLs from the sample parameters well width, barrier width, effective

masses, and band offset. The inverse of the escape time from a single well multiplied by the fraction

of the number of SL periods involved in the current oscillation is used as a measure for the oscillation

frequency. The escape time is given by the classical round trip time in the well divided by the tunneling
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probability through a single barrier. For weakly coupled SLs, where the vertical transport is dominated

by sequential resonant tunneling, the agreement between calculated and measured oscillation frequency

is as good as can be expected from such a simple model. For more strongly coupled SLs, the mea-

sured frequencies are somewhat smaller than the calculated ones. The transition of the prefactor occurs

for samples with a miniband width of a few meV, for which the transition between sequential resonant

tunneling and miniband transport is expected to occur.
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