# **Growth and Properties of Ferromagnet-Semiconductor Heterostructures**

## Klaus H. Ploog

Paul Drude Institute for Solid State Electronics D-10117 Berlin, GERMANY

### Abstract

Electrical spin injection from both a ferromagnetic metal and a ferromagnetic semimetal into a semiconductor has been achieved at room temperature. The injection mechanism is understood in terms of a tunneling process through a Schottky barrier. In this paper we summarize our results to control the atomic arrangement at the ferromagnet/semiconductor interface during molecular beam epitaxy for efficient spin injection.

# 1. Introduction

The possibilities of using not only the charge but also the spin of electrons in advanced semiconductor devices has recently stimulated the research efforts on ferromagnet-semiconductor (FM-SC) hybrid structures. Applying the two allowed spin states (+1/2 and - 1/2) of electrons to carry and store information, in addition to the charge, makes feasible the development of novel functionalities in these spintronic devices with the prospects of higher speed and lower power consumption [1]. The main hurdle to realize spintronic devices has been the problem of electrical injection of electrons with controlled spin alignment at room temperature. The challenge for materials engineering is to monolithically integrate, e.g. by epitaxy, suitable ferromagnets and semiconductors with well ordered heterointerfaces which allow undistorted spin injection from the ferromagnetic layer into the semiconductor heterostructure.

We have investigated the growth of bcc Fe films on GaAs by molecular beam epitaxy (MBE) [2] and we have studied MBE growth and properties of hexagonal binary MnAs films on GaAs(001) [3]. In this paper we review our recent results on these two very different FM/SC heterostructures which are both ferromagnetic at room temperature and which allowed for the first time room-temperature injection of spin-polarized electrons into a (Ga,In)As light emitting diode (LED) [4]. By measuring the degree of the circular polarization of the emitted light resulting from the electron-hole recombination, we have obtained a direct measure of the spin polarization.

## 2. Results and Discussion

## 2.1 Fe-on-GaAs

Fe-on-GaAs is one of the most widely studied epitaxial FM-SC hybrid systems. The stable bcc Fe phase with its bulk lattice constant being nearly half that of GaAs ( $2a_{Fe}/a_{GaAs} =$ 

1.012) grows epitaxially on GaAs(001) and GaAs(110) by MBE [5,6]. Hence, GaAs seems to provide an almost ideal substrate for the epitaxy of Fe films, and the magnetic properties, including evolution of the magnetic order and the correlation between uniaxial stress and cubic magnetic anisotropy as a function of layer thickness, as well as the magnetic reversal processes have been investigated in detail [7-9]. Most of the observed properties, including the lack of evidence for spin injection, were related to interfacial chemical reactions and to the atomic-scale nucleation processes, as monitored by electron diffraction and scanning tunneling microscopy (STM) for various Ga- and As-terminated surface reconstructions of the GaAs(001) substrate [9,10]. However, when re-investigating the Fe-on-GaAs systems [2] we realized that in these previous studies little attention had been paid to the micron-scale surface morphology of the Fe-on-GaAs layers and to the existence of macroscopic defects which might strongly affect the local magnetic properties.

Our study of MBE growth of bcc Fe films on GaAs(001) having different surface reconstructions as well as on GaAs(311)A, and (331)A revealed three major results [2]. First, to avoid the formation of interfacial Fe<sub>x</sub>Ga<sub>y</sub>As<sub>z</sub> compounds, growth of the Fe films must be carried out in As-free environment on well-ordered GaAs surfaces at substrate temperatures as low as possible. Second, Fe growth on Ga-terminated surfaces which might reduce interface reactions leads inevitably to the formation of macroscopic defects, even though the overall RMS roughness of 20 nm Fe films can be below 1 nm. Third, due to the higher adatom mobility, epitaxial growth of Fe on GaAs(311)A and (331)A is achieved at lower substrate temperature, i. e. even at 0 °C. This suppresses the formation of nonmagnetic interfacial layers more efficiently on As-terminated surfaces, which are indispensable for the formation of smooth epitaxial Fe layers free of macroscopic defects [2,11]. The As-terminated GaAs surfaces minimize Fe-Ga exchange reactions which might generate the macroscopic defects.

Our double crystal X-ray diffraction spectra from 20 nm Fe films deposited on Asstable (2x4) GaAs(001) surfaces at growth rates of 0.2 nm/min and different growth temperatures revealed the absence of any interfacial  $Fe_xGa_yAs_z$  layer [2] when the samples are

Fig. 1 EL spectrum recorded at 300 K. Left inset: Device structure with directions of the magnetic field (B) and the emitted light (EL); Right inset: Circular polarization of the EL light from recombination of electrons with spin +1/2.

grown at 50 °C or lower. The next obstacle affecting the experimental attempts to inject spin polarized electrons from Fe into GaAs came along with the theoretical considerations of Schmidt et al. [12] who explained the negative results of previous experiments by the conductivity mismatch between the two materials. In the diffusive regime (i.e. ohmic contacts) the spin injection coefficient  $\gamma \approx \sigma_{sc} / \sigma_{FM} \ll 1$ . Fortunately, Rashba [13] demonstrated shortly after that tunnel contacts can substantially increase the spin injection and solve the problem of mismatch in the conductivities of FM and SC. As a consequence, the Fe layer on our inverted n-i-p (Ga,In)As LED structure (inset of Fig. 1) forms a Schottky barrier [5], and we have been able to detect the spin polarization of injected electrons by the circular polarization of the electroluminescence [4].

The active region of the MBE-grown LED (left inset of Fig. 1) is comprised of two 4nm Ga<sub>0.8</sub>In<sub>0.2</sub>As quantum wells (QWs) separated by a 10-nm GaAs barrier and sandwiched between two 50-nm undoped GaAs spacer layers. On top of this intrinsic region, a 70-nm n-doped GaAs layer was grown. The 20 nm thick Fe injection layer was deposited on this n-GaAs in the attached As-free metal MBE chamber. Finally, the sample was capped with a 10-nm Al protection layer. The electroluminescence (EL) measurements were carried out in Faraday geometry with the LED mounted in a superconducting magnet system. The EL signal was collected from the backside of the transparent substrate. The circular polarization was analyzed by passing the EL light through a photoelastic modulator (PEM) and a linear polarizer. The LED was operated with short current pulses locked to the maximum or minimum phase shifts of the PEM [4].

The EL spectrum of the LED at room temperature, shown in Fig. 1, reveals one peak at 1.3 eV in accordance with the design of the active region. The EL peak width of 90 meV is larger than the heavy-hole/light-hole splitting which enables us to analyze both the heavy-hole and light-hole transition separately. The intensity component  $I_+$  ( $I_-$ ) of right (left) circularly polarized light has been determined by integrating over the low-energy and high-energy part of the EL peak for the heavy-hole and light-hole contribution (cf. shaded areas in Fig. 1). For

Fig 2 Circular polarization degree *P* for heavy-hole (full squares) and light-hole (open squares) transitions vs. external magnetic field. The Fe magnetization curve is shown in arbitrary units with two opposite signs (solid lines).

a given polarization degree of injected electrons and unpolarized holes, we expect the same absolute value but opposite signs for the circular polarization of degree  $P = (I_+ + I_-)/(I_+ + I_-)$ with its absolute value identical to the spin polarization of recombining electrons (right inset of Fig. 1). The polarization degree P is shown in Fig. 2 for heavy-hole and light-hole transitions as a function of an external magnetic field B together with the out-of-plane magnetization of the Fe layer which was independently obtained by spontaneous Hall effect measurements [11]. Both circular polarization curves follow in the whole magnetic field range the Fe magnetization and reveal the expected complementary behavior of P for heavyhole and light-hole transitions. These room-temperature results provide clear evidence for the injection of spin polarized electrons from Fe into GaAs with an efficiency of 2 %. The signatures of spin injection were not observed for the reference LED without Fe cap layer. An artifact due to polarization dependent reflection of the EL light at the Fe interface is excluded, since the reflection properties of Fe do not produce the complementary behavior found for the heavy-hole and light-hole transitions.

Our results demonstrate that Fe layers deposited at low temperature on n-GaAs form Schottky-type contacts which give rise to tunneling under appropriate bias conditions. Hence, electrons from the Fe layer must tunnel through the Schottky barrier before reaching the active region of the LED. Such a tunneling process leads to an enhanced spin injection efficiency, as predicted [13], since it is not affected by the resistance mismatch. This approach thus makes Fe a promising candidate as a tunneling spin injector paving the way for roomtemperature operation of spintronics devices.

Fig. 3 Left: Epitaxial relationship between  $MnAs(\overline{1}\ 100)$  and GaAs(001). The c axis of the hexagonal MnAs unit cell lies in the growth plane. Right: (a) Cross-sectional HRTEM image of MnAs/GaAs(001) interface in  $MnAs[11\overline{2}0] \parallel GaAs[110]$  projection and (b) corresponding Fourier-filtered image. The atom positions correspond to the dark regions of the image, (c) large-area HRTEM image of MnAs/GaAs(001) interface in the same projection as in (a). Insets: Magnified and Fourier-filtered part of interface image showing the secondary defect (left) and Fourier spectrum of the total image (right).

#### 2.2 MnAs-on-GaAs

The recently intensively studied FM/SC heterostructure of ternary Ga<sub>x</sub>Mn<sub>x-1</sub>As on GaAs, which is almost lattice-matched, exhibits a Curie temperature far below room temperature [15]. The binary hexagonal MnAs, on the other hand, is ferromagnetic at room temperature. However, it undergoes several phase transitions upon cooling-down from the growth temperature [about 250 °C for MnAs-on-GaAs(001)]. In Fig. 3 (left) we show schematically the epitaxial orientation of the semi-metallic MnAs toGaAs as experimentally established [15, 16]:  $((1\bar{1}00)MnAs)||(001)GaAs$  and  $[0001]MnAs//[1\bar{1}0]GaAs$ , i. e. the hexagonal prism plane is parallel to the cubic plane. This break of symmetry at the interface results in an asymmetric character of the interfacial structure and hence of the misfit parameters which depend strongly on the actual in-plane direction. The lattice misfit  $f_0^{(1)}$  with respect to the *GaAs*[110] direction, i. e. between MnAs{00.2} and GaAs{110} planes, amounts to more than 30 %, while the  $f_0^{(2)}$  value for the GaAs[110] direction, i. e. between *MnAs*{1120} and GaAs{110} planes, reaches only about 7.5 %.

We have directly monitored the formation of the MnAs-on-GaAs(001) interface during MBE in-situ by combining RHEED (reflection high-energy electron diffraction) and RDS (reflection difference spectroscopy) [16], The GaAs(001)-c(4x4) surface reconstruction provides the As-rich template of choice for the growth of MnAs at  $T_s = 250$  °C with a rather low rate of 20 nm/h and a high As<sub>4</sub>/Mn BEP ratio of 90. The epitaxial orientation of the MnAs films with respect to the substrate, as determined by RHEED and HRTEM, is indeed of type A, i. e. MnAs ( $\overline{1100}$ )||*GaAs*(001) and *MnAs*[0001]||*GaAs*[ $\overline{110}$ ]. The surface topography of 100 nm MnAs films, as imaged by AFM, exhibits flat regular furrows along MnAs[0001] with a depth of 4 – 7 nm and a width of 100 – 200 nm. The RMS roughness of a 10 µm<sup>2</sup> scan amounts to about 1 nm which is a very reasonable value [18].

In MnAs-on-GaAs(001) the large dependence of lattice misfit on direction leads to an unusual anisotropy of the misfit accommodation process [17,19]. The HRTEM image in Fig. 3 (right) reveals the nature of the interface along GaAs[110], where the lattice mismatch is above 30 %. The HRTEM contrast of the MnAs lattice imaged along  $[11\overline{2}0]$  is wavy-like with a period corresponding to the hexagonal lattice constant c = 0.57 nm. Due to the different interference pattern of both materials, the atomically abrupt interface can be seen clearly. Any localized misfit dislocations are not visible in the HRTEM image, as expected for incoherent systems. In fact, the interface does not look completely incoherent, even though the interfacial MnAs/GaAs bond strength is weaker than in pure III-V heterostructures. A detailed analysis of the interface structure reveals that the lattice misfit is accommodated by forming a coincidence lattice (Fig. 3). Every fourth MnAs{0002} plane fits every sixth GaAs{220} plane resulting in a commensurate-like interfacial region. Beyond this, no coherence strain with a coincidence lattice unit is detectable at this stage, except for the distortions in the first MnAs layer next to the interface.

This 4/6-ratio of the coincidence lattice reduces the natural lattice misfit to a value of about 5 %. This large deviation  $F_o = (ma_{S-} na_E)/ma_s$  (m, n positive integers;  $a_S$ ,  $a_E$  lattice spacings of substrate and epilayer) must be accompanied by secondary or coincidence-lattice misfit dislocations in order to guarantee epitaxial growth. As shown in Fig. 3c (inset) such defects are indeed observed at the interface, and they are characterized by an additional {0001} plane in one coincidence mesh, extending its ratio to 8/6. The measured average spacing of these secondary dislocations at every third unit is sufficient to relieve the

Fig. 4 Difference of circular polarization degree P as a function of external magnetic field measured at 80 K from LEDs with and without MnAs cap layer. Inset: Schematic layer sequence of LED depicting the directions of magnetic field B and emitted light EL. (Ga,In)As QWs are indicated by hatched areas.

coincidence lattice misfit, due to  $F_o = (14d_{0002} - 20d_{220}) = -0.0008$ . There is thus no residual elastic strain detectable in the [0001] direction. In perfect agreement with this, the spacing of the diffraction spots in the Fourier spectrum of Fig. 3c (inset) fits to strain-free bulk values. The overall result is an interface structure with commensurate domains having a perfect coincidence lattice arrangement separated by a network of secondary defects [17, 19].

The electrical spin injection from MnAs into GaAs was again studied by means of the circular polarization of EL from an inverted n-i-p (Ga,In)As LED in the same configuration as described for the Fe-on-GaAs system [20]. The polarization degree P measured at 80 K is shown in Fig. 4 for heavy-hole transitions as a function of an external magnetic field B. These results provide evidence for the injection of spin polarized electrons from MnAs into GaAs with an efficiency of 1.5 % at 80 K (and slightly lower efficiency at 300 K). These signatures of spin injection are absent in the reference samples without MnAs cap layer. The semi-metallic MnAs also forms Schottky-type contacts on GaAs(001). However, the asymmetry of this specific interface and the differences of the (unknown) thermal expansion coefficients will certainly affect the actual injection process of spin polarized electrons.

### **3.** Concluding Remarks

We have achieved spin injection from a ferromagnetic metal and from a ferromagnetic semi-metal into a semiconductor with efficiencies of about 2 % up to room temperature. The injection mechanism is understood in terms of a tunneling process through a Schottky barrier. In this context it is noteworthy that experimental evidence for spin-polarized electron tunneling using a scanning tunneling microscope was reported almost a decade ago [21] and very recently [22].

Finally, as mentioned above, the polarization degree P for transitions involving only one type of holes is identical to the spin polarization of recombining electrons in the (Ga, In)As QWs. However, if the spin relaxation time  $\tau_s$  [23, 24] in the quantum wells is shorter

than the radiative carrier lifetime  $\tau_R$ , the measured value of *P* would be a lower limit for the spin polarization of injected electrons, i. e. the spin injection efficiency in our experiments would then be larger than 2 % by a factor of about  $\tau_R / \tau_s$ . Measurements of the crucial time constants  $\tau_R$  and  $\tau_s$  for our LED structures are underway in our laboratory. Further optimization of the ferromagnet-semiconductor interface as well as of the device structure will lead to larger efficiencies.

## References

- [1] G. A. Prinz, Phys. Today <u>48</u> No. 4, 58 (1995)
- [2] H.-P. Schönherr, R. Nötzel, W. Q. Ma, and K. H. Ploog, J. Appl. Phys. <u>89</u>, 169 (2001)
- F. Schippan, G. Behme, L. Däweritz, K. H. Ploog, B. Dennis, K. U. Neumann, and K. R. A. Ziebeck, J. Appl. Phys. <u>88</u>, 2766 (2000)
- [4] H. J. Zhu, M. Ramsteiner, H. Kostial, M. Wassermeier, H.-P. Schönherr, and K. H. Ploog, Phys. Rev. Lett. <u>87</u>, 016601 (2001)
- [5] J. R. Waldrop and R. W. Grant, Appl. Phys. Lett. <u>34</u>, 630 (1979)
- [6] G. A. Prinz and J. J. Krebs, Appl. Phys. Lett. <u>39</u>, 397 (1981)
- [7] J. M. Florczak and E. D. Dahlberg, Phys. Rev. <u>B44</u>, 4338 (1991)
- [8] C. Daboo, R. J. Hicken, E. Gu, M. Gester, S. J. Gray, D. E. P. Eley, E. Ahmad, J. A. C. Bland, R. Ploessl, and J. N. Chapman, Phys. Rev. <u>B51</u>, 15964 (1995)
- [9] P. M. Thibado, E. Kneedler, B. T. Jonker, R. R. Bennett, B. V. Shanabrook, and L. J. Whitman, Phys. Rev. <u>B53</u>, R10481 (1996)
- [10] E. M. Kneedler, B. T. Jonkter, P. M. Thibado, R. J. Wagner, B. V. Shanabrook, and L. J. Whitman, Phys. Rev. <u>B56</u>, 8163 (1997)
- [11] K. J. Friedland, R. Nötzel, H.-P. Schönherr, A. Riedel, H. Kostial, and K. H. Ploog, Physica <u>E10</u>, 442 (2001)
- [12] G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees, Phys. Rev. <u>B62</u>, R4790 (2000)
- [13] E. I. Rashba, Phys. Rev. <u>B62</u>, R16267 (2000)
- [14] Y. Ohno, D. K. Young, B. Beschoten, F. Matsukara, H. Ohno, and D. D. Awschalom, Nature <u>402</u>, 790 (1999)
- [15] M. Tanaka, Mater. Sci. Eng. <u>B31</u>, 117 (1995)
- [16] F. Schippan, A. Trampert, L. Däweritz, and K. H. Ploog, J. Vac. Sci. Technol. <u>B17</u>, 1716 (1999)
- [17] A. Trampert, F. Schippan, L. Däweritz, and K. H. Ploog, Inst. Phys. Conf. Ser. <u>164</u>, 305 (1999)
- [18] L. Däweritz, F. Schippan, M. Kästner, B. Jenichen, V. M. Kaganer, K. H. Ploog, B. Dennis, K.-U. Neumann and K. R. A. Ziebeck, (ICSC2001-Proceedings)
- [19] A. Trampert and K. H. Ploog, Cryst. Res. Technol. <u>35</u>, 793 (2000)
- [20] M. Ramsteiner et al., (to be published)
- [21] S. F. Alvarado and P. Renaud, Phys. Rev. Lett. <u>68</u>, 1387 (1992)
- [22] V. LaBella, D. W. Bullock, Z. Ding, C. Emery, A. Venkatesan, W. F. Oliver, G. J. Salamo, P. M. Thibado, and M. Mortazavi, Science <u>292</u>, 1518 (2001)
- [23] D. Hägele, M. Oestreich, W. W. Rühle, N. Nestle, and K. Eberl, Appl. Phys. Lett. <u>73</u>, 1580 (1998)
- [24] A. Malinowski, R. S. Britton, T. Grevatt, R. T. Harley, D. A. Ritchie, and Y. Simmons, Phys. Rev. <u>B62</u>, 13034 (2000)